\(\int \frac {(d+e x)^2}{\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [1947]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 195 \[ \int \frac {(d+e x)^2}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {3 \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^2 d^2}+\frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c d}+\frac {3 \left (c d^2-a e^2\right )^2 \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c^{5/2} d^{5/2} \sqrt {e}} \]

[Out]

3/8*(-a*e^2+c*d^2)^2*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*
x^2)^(1/2))/c^(5/2)/d^(5/2)/e^(1/2)+3/4*(-a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^2/d^2+1/2*(e*
x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {684, 654, 635, 212} \[ \int \frac {(d+e x)^2}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {3 \left (c d^2-a e^2\right )^2 \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 c^{5/2} d^{5/2} \sqrt {e}}+\frac {3 \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c^2 d^2}+\frac {(d+e x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 c d} \]

[In]

Int[(d + e*x)^2/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(3*(c*d^2 - a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*c^2*d^2) + ((d + e*x)*Sqrt[a*d*e + (c*d^2 +
 a*e^2)*x + c*d*e*x^2])/(2*c*d) + (3*(c*d^2 - a*e^2)^2*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*
Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*c^(5/2)*d^(5/2)*Sqrt[e])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 654

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*((a + b*x + c*x^2)^(p +
 1)/(2*c*(p + 1))), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 684

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 1))), x] + Dist[(m + p)*((2*c*d - b*e)/(c*(m + 2*p + 1))), Int[(d + e
*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 -
b*d*e + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = \frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c d}+\frac {\left (3 \left (d^2-\frac {a e^2}{c}\right )\right ) \int \frac {d+e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{4 d} \\ & = \frac {3 \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^2 d^2}+\frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c d}+\frac {\left (3 \left (d^2-\frac {a e^2}{c}\right )^2\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 d^2} \\ & = \frac {3 \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^2 d^2}+\frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c d}+\frac {\left (3 \left (d^2-\frac {a e^2}{c}\right )^2\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 d^2} \\ & = \frac {3 \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^2 d^2}+\frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c d}+\frac {3 \left (c d^2-a e^2\right )^2 \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c^{5/2} d^{5/2} \sqrt {e}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.79 \[ \int \frac {(d+e x)^2}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\sqrt {c} \sqrt {d} (a e+c d x) (d+e x) \left (-3 a e^2+c d (5 d+2 e x)\right )+\frac {3 \left (c d^2-a e^2\right )^2 \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{\sqrt {e}}}{4 c^{5/2} d^{5/2} \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(d + e*x)^2/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(Sqrt[c]*Sqrt[d]*(a*e + c*d*x)*(d + e*x)*(-3*a*e^2 + c*d*(5*d + 2*e*x)) + (3*(c*d^2 - a*e^2)^2*Sqrt[a*e + c*d*
x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x])])/Sqrt[e])/(4*c^(5/2)*d^(
5/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(441\) vs. \(2(169)=338\).

Time = 3.02 (sec) , antiderivative size = 442, normalized size of antiderivative = 2.27

method result size
default \(\frac {d^{2} \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+x c d e}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{\sqrt {c d e}}+e^{2} \left (\frac {x \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{2 c d e}-\frac {3 \left (e^{2} a +c \,d^{2}\right ) \left (\frac {\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{c d e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+x c d e}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c d e \sqrt {c d e}}\right )}{4 c d e}-\frac {a \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+x c d e}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c \sqrt {c d e}}\right )+2 d e \left (\frac {\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{c d e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+x c d e}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{2 c d e \sqrt {c d e}}\right )\) \(442\)

[In]

int((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

d^2*ln((1/2*e^2*a+1/2*c*d^2+x*c*d*e)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)+e^2*
(1/2*x/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-3/4*(a*e^2+c*d^2)/c/d/e*(1/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c
*d*e*x^2)^(1/2)-1/2*(a*e^2+c*d^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+x*c*d*e)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+
c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))-1/2*a/c*ln((1/2*e^2*a+1/2*c*d^2+x*c*d*e)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x
+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))+2*d*e*(1/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/2*(a*e^2+c*d^2)/c/d
/e*ln((1/2*e^2*a+1/2*c*d^2+x*c*d*e)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 418, normalized size of antiderivative = 2.14 \[ \int \frac {(d+e x)^2}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\left [\frac {3 \, {\left (c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) + 4 \, {\left (2 \, c^{2} d^{2} e^{2} x + 5 \, c^{2} d^{3} e - 3 \, a c d e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{16 \, c^{3} d^{3} e}, -\frac {3 \, {\left (c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) - 2 \, {\left (2 \, c^{2} d^{2} e^{2} x + 5 \, c^{2} d^{3} e - 3 \, a c d e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{8 \, c^{3} d^{3} e}\right ] \]

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(3*(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2
*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e +
a*c*d*e^3)*x) + 4*(2*c^2*d^2*e^2*x + 5*c^2*d^3*e - 3*a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(
c^3*d^3*e), -1/8*(3*(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^
2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3
)*x)) - 2*(2*c^2*d^2*e^2*x + 5*c^2*d^3*e - 3*a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^3*
e)]

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 502 vs. \(2 (189) = 378\).

Time = 0.83 (sec) , antiderivative size = 502, normalized size of antiderivative = 2.57 \[ \int \frac {(d+e x)^2}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\begin {cases} \left (\frac {e x}{2 c d} + \frac {2 d e - \frac {e \left (\frac {3 a e^{2}}{2} + \frac {3 c d^{2}}{2}\right )}{2 c d}}{c d e}\right ) \sqrt {a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )} + \left (- \frac {a e^{2}}{2 c} + d^{2} - \frac {\left (a e^{2} + c d^{2}\right ) \left (2 d e - \frac {e \left (\frac {3 a e^{2}}{2} + \frac {3 c d^{2}}{2}\right )}{2 c d}\right )}{2 c d e}\right ) \left (\begin {cases} \frac {\log {\left (a e^{2} + c d^{2} + 2 c d e x + 2 \sqrt {c d e} \sqrt {a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )} \right )}}{\sqrt {c d e}} & \text {for}\: a d e - \frac {\left (a e^{2} + c d^{2}\right )^{2}}{4 c d e} \neq 0 \\\frac {\left (x - \frac {- a e^{2} - c d^{2}}{2 c d e}\right ) \log {\left (x - \frac {- a e^{2} - c d^{2}}{2 c d e} \right )}}{\sqrt {c d e \left (x - \frac {- a e^{2} - c d^{2}}{2 c d e}\right )^{2}}} & \text {otherwise} \end {cases}\right ) & \text {for}\: c d e \neq 0 \\\frac {2 \left (\frac {c^{2} d^{6} \sqrt {a d e + x \left (a e^{2} + c d^{2}\right )}}{a^{2} e^{4} + 2 a c d^{2} e^{2} + c^{2} d^{4}} + \frac {2 c d^{3} e \left (a d e + x \left (a e^{2} + c d^{2}\right )\right )^{\frac {3}{2}}}{3 \left (a^{2} e^{4} + 2 a c d^{2} e^{2} + c^{2} d^{4}\right )} + \frac {e^{2} \left (a d e + x \left (a e^{2} + c d^{2}\right )\right )^{\frac {5}{2}}}{5 \left (a^{2} e^{4} + 2 a c d^{2} e^{2} + c^{2} d^{4}\right )}\right )}{a e^{2} + c d^{2}} & \text {for}\: a e^{2} + c d^{2} \neq 0 \\\frac {\begin {cases} d^{2} x & \text {for}\: e = 0 \\\frac {\left (d + e x\right )^{3}}{3 e} & \text {otherwise} \end {cases}}{\sqrt {a d e}} & \text {otherwise} \end {cases} \]

[In]

integrate((e*x+d)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Piecewise(((e*x/(2*c*d) + (2*d*e - e*(3*a*e**2/2 + 3*c*d**2/2)/(2*c*d))/(c*d*e))*sqrt(a*d*e + c*d*e*x**2 + x*(
a*e**2 + c*d**2)) + (-a*e**2/(2*c) + d**2 - (a*e**2 + c*d**2)*(2*d*e - e*(3*a*e**2/2 + 3*c*d**2/2)/(2*c*d))/(2
*c*d*e))*Piecewise((log(a*e**2 + c*d**2 + 2*c*d*e*x + 2*sqrt(c*d*e)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d*
*2)))/sqrt(c*d*e), Ne(a*d*e - (a*e**2 + c*d**2)**2/(4*c*d*e), 0)), ((x - (-a*e**2 - c*d**2)/(2*c*d*e))*log(x -
 (-a*e**2 - c*d**2)/(2*c*d*e))/sqrt(c*d*e*(x - (-a*e**2 - c*d**2)/(2*c*d*e))**2), True)), Ne(c*d*e, 0)), (2*(c
**2*d**6*sqrt(a*d*e + x*(a*e**2 + c*d**2))/(a**2*e**4 + 2*a*c*d**2*e**2 + c**2*d**4) + 2*c*d**3*e*(a*d*e + x*(
a*e**2 + c*d**2))**(3/2)/(3*(a**2*e**4 + 2*a*c*d**2*e**2 + c**2*d**4)) + e**2*(a*d*e + x*(a*e**2 + c*d**2))**(
5/2)/(5*(a**2*e**4 + 2*a*c*d**2*e**2 + c**2*d**4)))/(a*e**2 + c*d**2), Ne(a*e**2 + c*d**2, 0)), (Piecewise((d*
*2*x, Eq(e, 0)), ((d + e*x)**3/(3*e), True))/sqrt(a*d*e), True))

Maxima [F(-2)]

Exception generated. \[ \int \frac {(d+e x)^2}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?`
 for more de

Giac [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.84 \[ \int \frac {(d+e x)^2}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {1}{4} \, \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e} {\left (\frac {2 \, e x}{c d} + \frac {5 \, c d^{2} e - 3 \, a e^{3}}{c^{2} d^{2} e}\right )} - \frac {3 \, {\left (c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \log \left ({\left | -c d^{2} - a e^{2} - 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{8 \, \sqrt {c d e} c^{2} d^{2}} \]

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

1/4*sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)*(2*e*x/(c*d) + (5*c*d^2*e - 3*a*e^3)/(c^2*d^2*e)) - 3/8*(c^2*d
^4 - 2*a*c*d^2*e^2 + a^2*e^4)*log(abs(-c*d^2 - a*e^2 - 2*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x
 + a*e^2*x + a*d*e))))/(sqrt(c*d*e)*c^2*d^2)

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^2}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {{\left (d+e\,x\right )}^2}{\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \]

[In]

int((d + e*x)^2/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2),x)

[Out]

int((d + e*x)^2/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2), x)